Slijedi popis integrala (antiderivacija funkcija) iracionalnih funkcija. Za potpun popis integrala funkcija, pogledati tablica integrala i popis integrala.
Integrali koji uključuju ![{\displaystyle r={\sqrt {x^{2}+a^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a5b563d1157ef51f373ed8405ed2397d9747b7)
[uredi | uredi kôd]
![{\displaystyle \int r\;dx={\frac {1}{2}}\left(xr+a^{2}\,\ln \left(x+r\right)\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1c5f30c4f0aa9fbf11413c1ec115df894dfd93e)
![{\displaystyle \int r^{3}\;dx={\frac {1}{4}}xr^{3}+{\frac {1}{8}}3a^{2}xr+{\frac {3}{8}}a^{4}\ln \left(x+r\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d7421385169b2232d733f7c27763e56fd22e9308)
![{\displaystyle \int r^{5}\;dx={\frac {1}{6}}xr^{5}+{\frac {5}{24}}a^{2}xr^{3}+{\frac {5}{16}}a^{4}xr+{\frac {5}{16}}a^{6}\ln \left(x+r\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3cfe34b79909c4dc7364885ed03d4516a3dd5d95)
![{\displaystyle \int xr\;dx={\frac {r^{3}}{3}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa85dcd1f66eb13ad78d9021baa3365d0cd5a324)
![{\displaystyle \int xr^{3}\;dx={\frac {r^{5}}{5}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/515fde7f096381878ff0fba2e3b6d43a5dc551bc)
![{\displaystyle \int xr^{2n+1}\;dx={\frac {r^{2n+3}}{2n+3}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb8eb03aaa7bd20b73101f75f9ffc85b5b396d44)
![{\displaystyle \int x^{2}r\;dx={\frac {xr^{3}}{4}}-{\frac {a^{2}xr}{8}}-{\frac {a^{4}}{8}}\ln \left(x+r\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3e2095bdc4fd69e8d0830f4575e40810a57cc52)
![{\displaystyle \int x^{2}r^{3}\;dx={\frac {xr^{5}}{6}}-{\frac {a^{2}xr^{3}}{24}}-{\frac {a^{4}xr}{16}}-{\frac {a^{6}}{16}}\ln \left(x+r\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a723539fb56d3aa6606bf9695ee7b108b6e8f454)
![{\displaystyle \int x^{3}r\;dx={\frac {r^{5}}{5}}-{\frac {a^{2}r^{3}}{3}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a15d81e4fa0b9f030f256763b72c6008f69c936a)
![{\displaystyle \int x^{3}r^{3}\;dx={\frac {r^{7}}{7}}-{\frac {a^{2}r^{5}}{5}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e78bd1e0b77ea737a4899dcb42ca34e89de17e1)
![{\displaystyle \int x^{3}r^{2n+1}\;dx={\frac {r^{2n+5}}{2n+5}}-{\frac {a^{3}r^{2n+3}}{2n+3}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3f387cfc72800dd20f45af45aadc9c1277499b31)
![{\displaystyle \int x^{4}r\;dx={\frac {x^{3}r^{3}}{6}}-{\frac {a^{2}xr^{3}}{8}}+{\frac {a^{4}xr}{16}}+{\frac {a^{6}}{16}}\ln \left(x+r\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d600b488dcf4f0d878215fbbd985abee76784c5)
![{\displaystyle \int x^{4}r^{3}\;dx={\frac {x^{3}r^{5}}{8}}-{\frac {a^{2}xr^{5}}{16}}+{\frac {a^{4}xr^{3}}{64}}+{\frac {3a^{6}xr}{128}}+{\frac {3a^{8}}{128}}\ln \left(x+r\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c49f1a676f8124430a2490d8f26ffe9dd04793b)
![{\displaystyle \int x^{5}r\;dx={\frac {r^{7}}{7}}-{\frac {2a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80d2fc7827936311af232e964067eb24c4500c9a)
![{\displaystyle \int x^{5}r^{3}\;dx={\frac {r^{9}}{9}}-{\frac {2a^{2}r^{7}}{7}}+{\frac {a^{4}r^{5}}{5}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e93550a93e58c7b0b77190b92ebf7b5978f874bb)
![{\displaystyle \int x^{5}r^{2n+1}\;dx={\frac {r^{2n+7}}{2n+7}}-{\frac {2a^{2}r^{2n+5}}{2n+5}}+{\frac {a^{4}r^{2n+3}}{2n+3}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eb92874abceb88f3268c344775435d9b63e02bf5)
![{\displaystyle \int {\frac {r\;dx}{x}}=r-a\ln \left|{\frac {a+r}{x}}\right|=r-a\operatorname {Arsh} {\frac {a}{x}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf27ae188fc0b91dd30c5f99a9ea6d3985d8a94b)
![{\displaystyle \int {\frac {r^{3}\;dx}{x}}={\frac {r^{3}}{3}}+a^{2}r-a^{3}\ln \left|{\frac {a+r}{x}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/35191c0a5242cdfb0a6c67a783aa2512b00e9b0d)
![{\displaystyle \int {\frac {r^{5}\;dx}{x}}={\frac {r^{5}}{5}}+{\frac {a^{2}r^{3}}{3}}+a^{4}r-a^{5}\ln \left|{\frac {a+r}{x}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c482f71c001a9c3ed91cc1574c421000eeac8e09)
![{\displaystyle \int {\frac {r^{7}\;dx}{x}}={\frac {r^{7}}{7}}+{\frac {a^{2}r^{5}}{5}}+{\frac {a^{4}r^{3}}{3}}+a^{6}r-a^{7}\ln \left|{\frac {a+r}{x}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0a37843c90bca6ba9536c67f9da283ddd604a0d3)
![{\displaystyle \int {\frac {dx}{r}}=\operatorname {Arsh} {\frac {x}{a}}=\ln \left|x+r\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9f51d673ab5ee70e661749fe6ee5e0f8532a5c)
![{\displaystyle \int {\frac {dx}{r^{3}}}={\frac {x}{a^{2}r}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b75dc25739304457e7112d90ef0ebd9c6777ef6f)
![{\displaystyle \int {\frac {x\,dx}{r}}=r+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ddc0e53c20f89de88b3167d2c6aaf2f3a049932)
![{\displaystyle \int {\frac {x\,dx}{r^{3}}}=-{\frac {1}{r}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/02230dd0b9c9f9848f6bc2d5169b66ea50edf56b)
![{\displaystyle \int {\frac {x^{2}\;dx}{r}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\,\operatorname {Arsh} {\frac {x}{a}}={\frac {x}{2}}r-{\frac {a^{2}}{2}}\ln \left|x+r\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e47490ab2c8a9fa81e72972c3391fd746d87ba5c)
![{\displaystyle \int {\frac {dx}{xr}}=-{\frac {1}{a}}\,\operatorname {Arsh} {\frac {a}{x}}=-{\frac {1}{a}}\ln \left|{\frac {a+r}{x}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d74b6333ee010c1958f6bbcd07e2e4cf9d9198b0)
Integrali koji uključuju ![{\displaystyle s={\sqrt {x^{2}-a^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c805d83f7cc45cb4a853fc0db6ac23c36bc908e)
[uredi | uredi kôd]
Pretpostavlja se da je
, za
vidi sljedeću sekciju:
![{\displaystyle \int xs\;dx={\frac {1}{3}}s^{3}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1190bf196fcb0068fc65b8cf8792af9d9cae7798)
![{\displaystyle \int {\frac {s\;dx}{x}}=s-a\cos ^{-1}\left|{\frac {a}{x}}\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e3796397e7bf4a7e7654dd17d20474cf8bdec98)
![{\displaystyle \int {\frac {dx}{s}}=\int {\frac {dx}{\sqrt {x^{2}-a^{2}}}}=\ln \left|{\frac {x+s}{a}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb756524781a61fbbcffb04f0e6bec168656a422)
Valja uočiti da je
, pri čemu se uzima pozitivna vrijednost od
.
![{\displaystyle \int {\frac {x\;dx}{s}}=s+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2b6621433db60797672dbf2e97cad4deca7f4ec)
![{\displaystyle \int {\frac {x\;dx}{s^{3}}}=-{\frac {1}{s}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/752fc2d5543c339aac80e5cb2dd447dd51fc1430)
![{\displaystyle \int {\frac {x\;dx}{s^{5}}}=-{\frac {1}{3s^{3}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f318b9b60539809d118bf6553e27d5fedab57c6a)
![{\displaystyle \int {\frac {x\;dx}{s^{7}}}=-{\frac {1}{5s^{5}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d832908929aaa06a06951a94a499751e758c9c)
![{\displaystyle \int {\frac {x\;dx}{s^{2n+1}}}=-{\frac {1}{(2n-1)s^{2n-1}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72dc4fc8ec035a88b66545bf79c71f8d6d38b7ed)
![{\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=-{\frac {1}{2n-1}}{\frac {x^{2m-1}}{s^{2n-1}}}+{\frac {2m-1}{2n-1}}\int {\frac {x^{2m-2}\;dx}{s^{2n-1}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc2d78da5c49951e4c0d49dbb4bcb2d9b1a2bdfa)
![{\displaystyle \int {\frac {x^{2}\;dx}{s}}={\frac {xs}{2}}+{\frac {a^{2}}{2}}\ln \left|{\frac {x+s}{a}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/03899a993e9fb2cb319969ac83c05b77d9e513ce)
![{\displaystyle \int {\frac {x^{2}\;dx}{s^{3}}}=-{\frac {x}{s}}+\ln \left|{\frac {x+s}{a}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b3884297dd8faa308ca1d40d2cda9b69e37941f9)
![{\displaystyle \int {\frac {x^{4}\;dx}{s}}={\frac {x^{3}s}{4}}+{\frac {3}{8}}a^{2}xs+{\frac {3}{8}}a^{4}\ln \left|{\frac {x+s}{a}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99dd6381c28a3957833889af032b0a628a1b1568)
![{\displaystyle \int {\frac {x^{4}\;dx}{s^{3}}}={\frac {xs}{2}}-{\frac {a^{2}x}{s}}+{\frac {3}{2}}a^{2}\ln \left|{\frac {x+s}{a}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7af07833e4418c75d3eff96e81c7621020ec395a)
![{\displaystyle \int {\frac {x^{4}\;dx}{s^{5}}}=-{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}+\ln \left|{\frac {x+s}{a}}\right|+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/07ac848e534cac8eb80805fea8739f84d800e0ae)
![{\displaystyle \int {\frac {x^{2m}\;dx}{s^{2n+1}}}=(-1)^{n-m}{\frac {1}{a^{2(n-m)}}}\sum _{i=0}^{n-m-1}{\frac {1}{2(m+i)+1}}{n-m-1 \choose i}{\frac {x^{2(m+i)+1}}{s^{2(m+i)+1}}}+C\qquad {\mbox{(}}n>m\geq 0{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0816477732c2cbe550e30013dcda0b8b93aabb7b)
![{\displaystyle \int {\frac {dx}{s^{3}}}=-{\frac {1}{a^{2}}}{\frac {x}{s}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e964c7258a700f57113616770089a49ab32de58d)
![{\displaystyle \int {\frac {dx}{s^{5}}}={\frac {1}{a^{4}}}\left[{\frac {x}{s}}-{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}\right]+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/10405ed1fcccf3e7762670c145a677767caf311c)
![{\displaystyle \int {\frac {dx}{s^{7}}}=-{\frac {1}{a^{6}}}\left[{\frac {x}{s}}-{\frac {2}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c43ecdf2360f30750f14a71c5cb56d71a7a6404f)
![{\displaystyle \int {\frac {dx}{s^{9}}}={\frac {1}{a^{8}}}\left[{\frac {x}{s}}-{\frac {3}{3}}{\frac {x^{3}}{s^{3}}}+{\frac {3}{5}}{\frac {x^{5}}{s^{5}}}-{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac6f59169ebe8069811cb7eb13822c57d0f4d383)
![{\displaystyle \int {\frac {x^{2}\;dx}{s^{5}}}=-{\frac {1}{a^{2}}}{\frac {x^{3}}{3s^{3}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0606e6d58d0a3553a33458f73c675c940b86537b)
![{\displaystyle \int {\frac {x^{2}\;dx}{s^{7}}}={\frac {1}{a^{4}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {1}{5}}{\frac {x^{5}}{s^{5}}}\right]+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a6e237c40a3f4ac9b955d44d3a8bfd621e737699)
![{\displaystyle \int {\frac {x^{2}\;dx}{s^{9}}}=-{\frac {1}{a^{6}}}\left[{\frac {1}{3}}{\frac {x^{3}}{s^{3}}}-{\frac {2}{5}}{\frac {x^{5}}{s^{5}}}+{\frac {1}{7}}{\frac {x^{7}}{s^{7}}}\right]+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/850fb2b3d06749fc818acf5f940e3eec61edbce9)
Integrali koji uključuju ![{\displaystyle t={\sqrt {a^{2}-x^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82a5706c6ddbfb67c353604cd6ec51ca50d2c65d)
[uredi | uredi kôd]
![{\displaystyle \int t\;dx={\frac {1}{2}}\left(xt+a^{2}\arcsin {\frac {x}{a}}\right)+C\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/542491593e556580fff0665218a0148846beccfb)
![{\displaystyle \int xt\;dx=-{\frac {1}{3}}t^{3}+C\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1909a97e2614beb271587c1cc011dfe6e0dc18a5)
![{\displaystyle \int {\frac {t\;dx}{x}}=t-a\ln \left|{\frac {a+t}{x}}\right|+C\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/140d4bd18e3f1fd74a4c7ca67afc01dc3df27253)
![{\displaystyle \int {\frac {dx}{t}}=\arcsin {\frac {x}{a}}+C\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e4c763f815b0ac4df999f89ad34edb02edda6dcc)
![{\displaystyle \int {\frac {x^{2}\;dx}{t}}={\frac {1}{2}}\left(-xt+a^{2}\arcsin {\frac {x}{a}}\right)+C\qquad {\mbox{(}}|x|\leq |a|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61efcd2d83c45523632ac6060325d694b333909e)
![{\displaystyle \int t\;dx={\frac {1}{2}}\left(xt-\operatorname {sgn} x\,\operatorname {Arch} \left|{\frac {x}{a}}\right|\right)+C\qquad {\mbox{(za }}|x|\geq |a|{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1aba8b74e3fc8ed7e5631fca34ac8cf23616a85b)
Integrali koji uključuju ![{\displaystyle R={\sqrt {ax^{2}+bx+c}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2799cbf609e20e98fdfb5064f181935257d025)
[uredi | uredi kôd]
![{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln \left|2{\sqrt {a}}R+2ax+b\right|+C\qquad {\mbox{(za }}a>0{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5794ff87aba4d200a236ed461ec2159fd30eb23a)
![{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\,\operatorname {Arsh} {\frac {2ax+b}{\sqrt {4ac-b^{2}}}}+C\qquad {\mbox{(za }}a>0{\mbox{, }}4ac-b^{2}>0{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d058411272dc3ba80a8acd02bee7ca86ac7526e)
![{\displaystyle \int {\frac {dx}{R}}={\frac {1}{\sqrt {a}}}\ln |2ax+b|\quad {\mbox{(za }}a>0{\mbox{, }}4ac-b^{2}=0{\mbox{)}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bad03ac263174311c4e17f25911f3a34c3ab9781)
![{\displaystyle \int {\frac {dx}{R}}=-{\frac {1}{\sqrt {-a}}}\arcsin {\frac {2ax+b}{\sqrt {b^{2}-4ac}}}+C\qquad {\mbox{(za }}a<0{\mbox{, }}4ac-b^{2}<0{\mbox{, }}\left|2ax+b\right|<{\sqrt {b^{2}-4ac}}{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9ef8aa735ceab458ecb47b0201fc562ba463ac9e)
![{\displaystyle \int {\frac {dx}{R^{3}}}={\frac {4ax+2b}{(4ac-b^{2})R}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bff53b8061601cee37c8be25ca2d0280dbb3549f)
![{\displaystyle \int {\frac {dx}{R^{5}}}={\frac {4ax+2b}{3(4ac-b^{2})R}}\left({\frac {1}{R^{2}}}+{\frac {8a}{4ac-b^{2}}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/794e26e2548e9ac6555df064fcb515f4fc443a11)
![{\displaystyle \int {\frac {dx}{R^{2n+1}}}={\frac {2}{(2n-1)(4ac-b^{2})}}\left({\frac {2ax+b}{R^{2n-1}}}+4a(n-1)\int {\frac {dx}{R^{2n-1}}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3d38518d5d759b0fbfbad30013fd3e5114f39eab)
![{\displaystyle \int {\frac {x}{R}}\;dx={\frac {R}{a}}-{\frac {b}{2a}}\int {\frac {dx}{R}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fd233457e4ed703e6cfba4e28372935ed062d37e)
![{\displaystyle \int {\frac {x}{R^{3}}}\;dx=-{\frac {2bx+4c}{(4ac-b^{2})R}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/79a63e197c33a9706e9a7ab372510b5ba3f91257)
![{\displaystyle \int {\frac {x}{R^{2n+1}}}\;dx=-{\frac {1}{(2n-1)aR^{2n-1}}}-{\frac {b}{2a}}\int {\frac {dx}{R^{2n+1}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d94d65574819e751481696899f5ded57c90e4095)
![{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\ln \left({\frac {2{\sqrt {c}}R+bx+2c}{x}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/755d7187a76433d1e1acd1b149fba342d8a92df7)
![{\displaystyle \int {\frac {dx}{xR}}=-{\frac {1}{\sqrt {c}}}\operatorname {Arsh} \left({\frac {bx+2c}{|x|{\sqrt {4ac-b^{2}}}}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/eac31663079dcb53ba410c01d10ba1450d61bf4d)
Integrali koji uključuju ![{\displaystyle S={\sqrt {ax+b}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f15909647c04a43592ea6d8f3b4a2d1a060d727c)
[uredi | uredi kôd]
![{\displaystyle \int {\frac {dx}{x{\sqrt {ax+b}}}}\,=\,{\frac {-2}{\sqrt {b}}}\operatorname {Arth} {\sqrt {\frac {ax+b}{b}}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/747322d884c2db71874cf37682a2478942b76b58)
![{\displaystyle \int {\frac {\sqrt {ax+b}}{x}}\,dx\;=\;2\left({\sqrt {ax+b}}-{\sqrt {b}}\operatorname {Arth} {\sqrt {\frac {ax+b}{b}}}\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc117adc55222fee6ad296d1b8b969c65bd2146)
![{\displaystyle \int {\frac {x^{n}}{\sqrt {ax+b}}}\,dx\;=\;{\frac {2}{a(2n+1)}}\left(x^{n}{\sqrt {ax+b}}-bn\int {\frac {x^{n-1}}{\sqrt {ax+b}}}\,dx\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d219c7aed398a17940a0b38c7cf4852a1ba645d2)
![{\displaystyle \int x^{n}{\sqrt {ax+b}}\,dx\;=\;{\frac {2}{2n+1}}\left(x^{n+1}{\sqrt {ax+b}}+bx^{n}{\sqrt {ax+b}}-nb\int x^{n-1}{\sqrt {ax+b}}\,dx\right)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62f458473860219514f37ea7f89ddd79b117053c)