Prijeđi na sadržaj

Kvadratna funkcija

Izvor: Wikipedija

Kvadratna funkcija je polinomna funkcija gdje je najveća potencija Najčešće se zapisuje u obliku

graf kvadratne funkcije u koordinatnom sustavu je parabola.

Na primjer,

je kvadratna funkcija, čiji je graf prikazan je na slici desno.


Nultočke funkcije

[uredi | uredi kôd]

U analizi osobina neke funkcije uobičajeno je najprije naći nultočke funkcije, odn. nultočke grafa funkcije za koje funkcija poprima vrijednost nula. U prikazanom slučaju to vodi rješavanju kvadratne jednadžbe

rješenja koje su :

Točke i predstavljaju zato nultočke grafa funkcije

.

U jednostavnijim slučajevima nultočke funkcije možemo naći neposredno iz same funkcije. Naime, razmatrajući funkciju

na prvi pogled je vidljivo da se ona može prikazati u obliku umnoška dva binomna člana kao

gdje će očito vrijednost funkcije biti jednaka nuli za i .

Ako graf funkcije zaista siječe apscisu, odn. x-os koordinatnog sustava, tada će nultočke funkcije biti realni brojevi jer su i rješenja kvadratne jednadžbe realna. Međutim, ako graf funkcije ne siječe x-os tada niti odgovarajuća kvadratna jednadžba neće imati realna rješenja, već će se rješenja nalaziti u domeni kompleksnih brojeva.

Tjeme grafa funkcije

[uredi | uredi kôd]

U primjeru datu kvadratnu funkciju možemo razmatrati i kao parabolu osnovnog oblika

no pomaknutu iz središta koordinatnog sustava, gdje je p poluparametar parabole. Iz funkcije zadane sa

može se naći redom

odakle slijedi da su koordinate tjemena T grafa funkcije određene koordinatama x=0,5 i y=-2,25 te govorimo o grafu funkcije čije je tjeme "pomaknuto" izvan središta koordinatnog sustava.

Ekstremi kvadratne funkcije

[uredi | uredi kôd]

Kvadratna funkcija ima jedan ekstrem, minimum ili maksimum funkcije, a ovisno o predznaku vodećeg člana funkcije. Za funkciju

to će biti minimum funkcije (a>0) koji se na grafu funkcije nalazi u točki gdje je smješteno tjeme funkcije T. Ekstrem funkcije može se naći i na drugi način. Diferencirajući funkciju nalazimo da je

odakle slijedi da je

Ekstrem funkcije postoji za dy/dx=0 što vrijedi za x=1/2, a to je upravo x koordinata tjemena parabole u grafu. Kako je, nadalje, druga derivacija za svaki x veća od nule, očito se zaista radi o minimumu funkcije što se evidentno vidi i iz grafa funkcije.

Parabola i kvadratna funkcija

[uredi | uredi kôd]

Parabola je kao krivulja de facto graf kvadratne funkcije. Valja samo ustanoviti vezu između odgovarajućih članova polinoma kvadratne funkcije te poluparametra p parabole.

Paraboli s tjemenom u ishodištu koordinatnog sustava i osnosimetričnoj u odnosu na y-os koordinatnog sustava odgovara tjemena jednadžba oblika

odakle slijedi da je

Uspoređujući parabolu s tjemenom u ishodištu koordinatnog sustava kao grafa odgovarajuće kvadratne funkcije nalazimo da je

gdje je evidentno

, odnosno

što predstavlja neposrednu vezu poluparametra parabole p i vodećeg člana a polinoma kvadratne funkcije. Do odgovarajuće sličnih odnosa može se doći i razmatranjem parabole, odn. odgovarajućeg grafa kvadratne funkcije s pomaknutim tjemenom izvan središta koordinatnog sustava.

Konačno, valja napomenuti da paraboli definiranoj tjemenom jednadžbom

odgovara inverzna kvadratna funkcija oblika

gdje će sada, naravno, članovi a, b i c poprimiti neke druge vrijednosti, a uz zadržavanje svih odgovarajućih ekvivalentnih odnosa.

Značaj kvadratne funkcije

[uredi | uredi kôd]

Razmatranje svojstava kvadratne funkcije često je na neki način uvod u analizu sve složenijih matematičkih funkcija i uvod u matematičku analizu općenito. Kvadratnu funkciju, međutim, vrlo često nalazimo u prirodi u različitim fizikalnim sustavima jer je, na primjer, u svakom ubrzanom gibanju prijeđeni put ovisan o kvadratu vremena, električna snaga na otporniku ovisna je o veličini otpora i kvadratu struje koja prolazi kroz njega, električna energija pohranjena u kondenzatoru ovisi o njegovu kapacitetu i kvadratu napona koji postoji na njegovim oblogama i td.

Literatura

[uredi | uredi kôd]
  • Gusić J., Mladinić P., Pavković B, "Matematika 2", Školska knjiga, Zagreb, 2006.
  • Antoliš S., Copić A., "Matematika 4", Školska knjiga, Zagreb, 2006.