Prijeđi na sadržaj

De Moivreov teorem

Izvor: Wikipedija

De Moivreov teorem u kombinatorici je matematički poučak koji govori o svojstvu multiskupova, odnosno kolekciji objekata koji se smiju ponavljati, za razliku od skupova. Ako se neki element multiskupa ponavlja beskonačno mnogo puta, kažemo da ima beskonačnu kratnost. Teorem je nazvan po francuskom matematičaru Abrahamu de Moivreu.

Teorem glasi:

Neka je multiskup s različitih elemenata od kojih svaki ima beskonačnu kratnost. Tada je broj r-kombinacija od u kojima se svaki od različitih elemenata pojavljuje barem jednom jednak .[1]

Dokaz

[uredi | uredi kôd]

Neka je . Zanima nas koliko ima r-kombinacija od koje su oblika gdje je . Treba uočiti da je skup svih takvih r-kombinacija u bijekciji sa svim uređenim n-torkama nenegativnih cijelih brojeva čija je suma , a njih ima koliko i rješenja jednadžbe u skupu , a njih ima

Izvori

[uredi | uredi kôd]
  1. Darko Veljan, Kombinatorika s teorijom grafova, Školska knjiga, Zagreb, 1989., str. 98, 99