Prijeđi na sadržaj

Bernsteinov polinom

Izvor: Wikipedija
Aproksimacija grafa funkcije upotrebom Bernsteinovog polinoma.

Bernsteinov polinom se može uzeti kao aproksimacija funkcije neprekidne na segmentu i to je polinom koji služi kao primjer za Weierstrassov teorem o aproksimaciji neprekidne funkcije na segmentu polinomom, koji govori da se razlika između funkcije i traženog polinoma (teorem ne daje metodu kako da se polinom nađe, nego samo utvrđuje postojanje) može napraviti proizvoljno malom, tj. gdje je P traženi polinom.

Bernsteinov polinom glasi (u slučaju segmenta ):[1]

Gdje je f funkcija neprekidna na segmentu realnih brojeva. Bernsteinov polinom se jednostavno izračunava: segment [0, 1] se podijeli na n jednakih dijelova i u dobivenim točkama se računaju vrijednosti funkcije.

U slučaju segmenta Bernsteinov polinom glasi:[1]

Vidi još

[uredi | uredi kôd]

Izvori

[uredi | uredi kôd]
  1. a b Svetozar Kurepa: Matematička analiza 2 funkcije jedne varijable, Tehnička knjiga, Zagreb, 1971. (str. 43)